该研究从提升组装单元表面粗糙度角度出发(增加次级结构),通过原位引入聚多巴胺衍生氮掺杂碳作为阻力增强剂、粘结剂与导电“桥梁”,获得了多级尺度结构的聚多巴胺衍生碳/石墨烯仿贝壳复合纤维,展现了卓越的拉伸强度(-724MPa)和导电性(-6.6×104Sm-1),该指标远高于之前文献报道的类似仿贝壳石墨烯基纤维的相关性能。
通过原子力显微镜观察发现聚多巴胺包覆石墨烯(GO@PDA)纳米组装单元表面散布有丰富的岛状颗粒,这种独特的结构为模拟和构筑类珍珠母多级纤维结构提供了可能。通扫描电镜、软X射线Nano CT表征可以发现由GO@PDA组装成的宏观尺度纤维由轴向取向、紧密堆积的层状单元组成,纤维整体呈均匀的线状。获得的纤维经切片处理后,经高分辨电子显微镜表征可以发现在宏观RGO@PDA纤维内部的组装单元(RGO@PDA)表面依然散布有大量的岛状颗粒,证实了表面粗糙的RCO@PDA独特的次级纳米结构依然可以在纤维中维持。
这种多尺度仿生设计显著提高了RGO@PDA纤维机械强度和电导性。力学性能测试显示,随着退火温度的提升,RGO@PDA和RGO纤维的机械强度和导电性均逐步提升,并且RCO@PDA纤维的机械强度和导电性远高于RGO纤维。优化获得的聚多巴胺衍生碳/石墨烯仿贝壳复合纤维展现了卓越的拉伸强度和导电性。这些优异的综合性能为石墨烯基纤维进一步拓展在柔性、可穿戴微器件(传感器、驱动器、超级电容器、电池等)领域的应用提供了可能。